Create Vector Database Collection
POST /api/v3/organizations/{organisation}/ai/vector-db/collections
POST
/api/v3/organizations/{organisation}/ai/vector-db/collections
Creates a new vector database collection (knowledge base category) for semantic search. Collections store documents with embeddings for RAG (Retrieval Augmented Generation). * * Use Cases: * - Product documentation (‘docs’) * - Company policies (‘policies’) * - Support knowledge base (‘support’) * - Technical specifications (‘specs’)
Authorizations
Parameters
Path Parameters
organisation
required
string
The organisation ID
Request Body required
object
name
required
Collection name (used for reference)
string
product-documentation description
string
Product user guides and API documentation embeddingModel
Embedding model to use (default: amazon.titan-embed-text-v2:0)
string
amazon.titan-embed-text-v2:0 dimensions
Embedding dimensions (default: 1024)
integer
1024Responses
201
Collection created successfully
object
success
boolean
true collection
object
collectionId
string format: uuid
name
string
description
string
embeddingModel
string
dimensions
integer
message
string
Collection created successfully400
Invalid request parameters
403
Access denied
409
Collection with this name already exists
500
Failed to create collection