Generate text embeddings for semantic search and RAG applications
  POST /api/v3/organizations/{organisation}/ai/embeddings    
 Generates vector embeddings for text content using embedding models. Used for semantic search, document similarity, and RAG applications. * * Features: * - Single text or batch processing (up to 100 texts) * - Configurable dimensions (256, 512, 1024, 8192 for Titan v2) * - Optional normalization to unit length * - Usage tracking for billing * * Use Cases: * - Semantic search across documents * - Similarity matching for content recommendations * - RAG (Retrieval-Augmented Generation) pipelines * - Clustering and classification * * Available Embedding Models: * - amazon.titan-embed-text-v2:0 (default, supports 256-8192 dimensions) * - amazon.titan-embed-text-v1:0 (1536 dimensions fixed)
Authorizations
Parameters
Path Parameters
The organisation ID
Request Body required
Embedding request with single or multiple texts
object
The Australian government announced new climate policy[  "Climate change policy",  "Healthcare reform",  "Education funding"]Embedding model to use
amazon.titan-embed-text-v2:0Output embedding dimensions. Titan v2 supports: 256, 512, 1024, 8192
1024Normalize embeddings to unit length (magnitude = 1.0)
trueExample
{  "input": "The Australian government announced new climate policy",  "modelId": "amazon.titan-embed-text-v2:0",  "dimensions": 1024,  "normalize": true}Responses
200
Embeddings generated successfully
object
Single embedding vector if input was a string
Array of embedding vectors if input was an array
Model used to generate embeddings
amazon.titan-embed-text-v2:0Dimensionality of each embedding vector
1024object
Number of tokens in input text(s)
Total tokens (same as inputTokens for embeddings)
Example
{  "embeddings": [    0.0215,    0.0008,    0.0312,    -0.0087,    0.0273  ],  "model": "amazon.titan-embed-text-v2:0",  "dimension": 1024,  "usage": {    "inputTokens": 8,    "totalTokens": 8  }}400
Invalid request parameters
403
Access denied
500
Failed to generate embeddings
